Probability of detecting right whales in near real-time using autonomous platforms

Hansen Johnson^{1,2*}

Mark Baumgartner² Ying-Tsong Lin² Arthur Newhall² Christopher Taggart¹

Dalhousie University, Halifax NS, Canada¹ Woods Hole Oceanographic Institution, Woods Hole MA, USA²

Time [s]

North Atlantic right whales

- Endangered (IUCN)
- Upcall suitable for passive acoustic monitoring (PAM)
- Need for real-time PAM from autonomous platforms
- WHOI developed operational system for gliders and buoys

Digital acoustic monitoring instrument (DMON)

- Hydrophone + recorder + processor
- Low power

DMON board

DMON in pressure housing

Low-frequency detection and classification system (LFDCS)

- 1. Creates a conditioned spectrogram
- 2. Detects sounds and 'pitch tracks' them
- 3. Classifies pitch tracks using discriminate function analysis
- 4. Pitch tracks sent to shore in near real-time for manual validation

Audio/spectrograms (archival)

Successfully detected: right, fin, humpback, sei, blue, bowhead, beluga, walrus, bearded seal

Baumgartner & Mussoline (2011) JASA 129:2889-2902.

Low-frequency detection and classification system (LFDCS)

- 1. Creates a conditioned spectrogram
- 2. Detects sounds and 'pitch tracks' them
- 3. Classifies pitch tracks using discriminate function analysis
- 4. Pitch tracks sent to shore in near real-time for manual validation

Pitch tracks (real-time)

Successfully detected: right, fin, humpback, sei, blue, bowhead, beluga, walrus, bearded seal

Baumgartner & Mussoline (2011) JASA 129:2889-2902.

DMON-LFDCS operational platforms

Performance of DMON-LFDCS

- Extensive work to characterize accuracy
 - Mark Baumgartner's talk Wednesday at 11:40am
- Knowledge gap: detection range

Study Goal:

Quantify the range-dependent probability of detection of the DMON-LFDCS on mobile and fixed platforms

1. Deploy an 8-channel HLA, 4-channel VLA alongside a DMON-LFDCS Slocum glider and DMON-LFDCS moored buoy.

- 2. Identify all upcalls in acoustic records
 - Audio/spectrograms for HLA/VLA [manual; no detector]
 - Pitch tracks for glider and buoy

3. Localize calls using normal mode back-propagation

- a. Mode filter at VLA
- b. Beamform with HLA
- c. Back-propagate, accounting for modal dispersion (below)

4. Conduct a call-by-call comparison (buoy versus array)

4. Conduct a call-by-call comparison (glider versus array)

5. Quantify the probability of detection as function of range to the call for each platform

Range from platform (km)

Key assumption:

• Array *localization range* is greater than the *detection range* of the glider or buoy

Detections

- 488 right whale upcalls detected on the HLA/VLA
- 75 calls localized

Probability of detection

Probability of detection

Probability of detection

Missed calls: close range

1. Humpback song

Missed calls: close range

2. Platform noise

24

Missed calls: close range

3. Low SNR

Conclusions

- NMBP technique was successful for right whale localization in shallow water
- Detection curves: buoy is significant, glider marginal
- Factors other than range contribute to missed calls at close range
- Detection probability does not reach 0 at long range
 - Array localization range may not exceed platform detection range

Next steps

- Reduce uncertainty in logistic regression
 - More calls (mode filtering, extra deployment, etc.)
- Parameterize model-based estimates to apply to new areas
- Repeat experiment with distributed array

Questions?

Thanks to:

R/V Tioga: Ken Houtler and Ian Hanley

WHOI Buoy Group: John Kemp, Meg Donohue, Jim Dunn, and Nico Llanos

WHOI AOPE: Peter Koski, Julien Bonnel and Dan Zitterbart

WHOI Dive Group: Ed O'Brien

Taggart lab: Kim Davies, Delphine Durette-Morin, Meg Carr, and Marcia Pearson

07 June 2018

2018 DCLDE Paris

hansen.johnson@dal.ca