Uncertainty in right whale location following visual or acoustic detection

Hansen Johnson^{1,2*}

Mark Baumgartner²

Christopher Taggart¹

¹Dalhousie University, Halifax NS, Canada ²Woods Hole Oceanographic Institution, Woods Hole MA, USA

Right Whale Management

		USA	Canada
Vessel	Dynamic	Voluntary <10 kt Dynamic Management Areas (DMAs)	Mandatory <10 kt zones in GSL shipping lanes
	Static	Mandatory <10 kt Seasonal Management Areas (SMAs)	Mandatory <10 kt in central GSL; Areas To Be Avoided (ATBAs) in critical habitats
Fishing	Dynamic	N/A	Fixed gear closures in GSL and critical habitats (48 h to pull gear)
	Static	Seasonal area closures, gear modifications, etc.	Static fixed-gear closures in southern GSL

More details in this session...

Sources of dynamic data

Visual

- Planes, vessels, etc.
- Benefits
 - Broad spatial coverage
 - Multiple data products
- Limitations
 - Availability bias
 - Expensive
 - Weather, day/night
 - Low endurance
 - Risk to personnel

Sources of dynamic data

Visual

- Planes, vessels, etc.
- Benefits
 - Broad spatial coverage
 - Multiple data products
- Limitations
 - Availability bias
 - Expensive
 - Weather, day/night
 - Low endurance
 - Risk to personnel

Acoustic

- Ocean gliders, moorings, etc.
- Benefits
 - Inexpensive
 - Accurate
 - Persistent (months to years)
 - No risk to personnel
 - Provides ocean data (gliders)
- Limitations
 - Availability bias
 - Presence only
 - Location uncertainty

Acoustics for dynamic management

- WHOI near real-time PAM system
 - ~5000 days at sea and ~1500 right whale detections
 - Well-characterized and accurate
 (Baumgartner et al., 2019)
 - See Mark Baumgartner's talk (tomorrow 14:15)
- Additional systems coming online

Acoustics for dynamic management

- Detections are (mostly) not used by managers
 - Uncertainty in exact position of calling whale
- Does not consider whale movement, which can be substantial
 - BOF/GOM: ~80 km/day (Baumgartner and Mate 2005)
 - GSL: ~5 km/day to max ~40 km/day (see Leah Crowe's talk tomorrow at 1015)

Acoustics for dynamic management

How much does detection range matter when you consider whale movement?

Approach

- 1. Simulate whale movements after visual and acoustic detection
- 2. Calculate and compare location uncertainties over time

Place whale in model domain according to visual or acoustic uncertainty

2. Simulate whale movement over a 96-hr period

3. Calculate and compare ranges from initial (reported) position

4. Repeat 100k times to approximate all possible whale positions / trajectories

Model parameterization

Acoustic detection ranges

Short, medium, and long

Johnson et al *in prep*; Laurinolli et al 2002

Movement behaviors

Traveling, feeding, and socializing

Van der Hoop et al 2012; Mayo & Marx 1989

Example run: medium detection range

Elapsed time = 0 hrs

Example run: medium detection range

Elapsed time = 24 hrs

Example run: medium detection range

Elapsed time = 96 hrs

Location uncertainty

Management Context

Detection range: — long - - medium · · · · short Platform: — acoustic — ⊮isual

Conclusions

- Right whales are not points on a map; management must consider movement
- Acoustic and visual detections provide equally uncertain estimates of whale location on management timescales
- Dynamic management should target large areas dominated by low-displacement behaviors (socializing, feeding)
- Need to incorporate acoustics into dynamic management

Excluding acoustic detections only impedes right whale recovery

Questions?

Thanks to:

Kim Davies, Delphine Durette-Morin, Meg Carr, Kim Franklin, Christoph Renkl, Keith Thompson, Daniel Morrison, Marcia Pearson, and others

MEOPAR-WHaLE, Vanier, Killam, NSGS, Dalhousie, NSERC

Email: hansen.johnson@dal.ca

